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ABSTRACT
Ob/ob mice are leptin-deficient animals with uninhibited food intake and susceptibility to gain
weight anddevelop type2diabetes. Themicehavebeenused to studyobesity anddiabetes.Wegen-
erated a dataset of different tissue gene expressions from wild-type and ob/ob mice with a normal
diet (ND) or high-fat diet (HFD). The gene expression was profiled at a genome-scale using RNA-seq.
We deposited the raw data to the short read archive and the processed data to the gene expression
omnibus. In thismanuscript, we describe generating the dataset and technical validation of the gene
expression profiles. We assessed the quality of the reads, alignment, and the quantification of gene
expression. We found that the tissue of origin explained the most variance between samples. Non-
coding features differed in their contribution to themice profiles. Gene expression profiles diverged
between the experimental groups. To sum, this dataset can be used to study tissue-specific gene
expression in weight gain susceptible mice and the response to HFD.
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Introduction

The ob/ob mouse (ob/ob hereafter) is a mutant (origi-
nal) strain in which the gene coding for leptin (Lep) is
de!cient (Ingalls et al. 1950). As a result, the mouse
has uninhibited food intake and becomes obese as
it ages (Lindström 2007). Dysregulated metabolism
results in hyperglycemia and hyperlipidemia in this
mouse.Moreover, in response to insulin resistance, the
mouse adapts by increasing the number of pancreatic
beta cells and insulin production. Ob/ob mouse is a
frequently used model of type 2 diabetes and obesity.

Gene expression datasets of ob/ob mice were gen-
erated mostly using microarrays or rarely RNA-seq
(Yu-Han et al. 2019; Wilhelmi et al. 2021). These stud-
ies focus on a single tissue (pancreas, Lupo et al. 2020;
Wilhelmi et al. 2021; glomerulus, Sugahara et al. 2020;
or myocardium, Eduardo Rame et al. 2011). One pub-
lished dataset pro!led the gene expression of adipose
tissue in ob/ob mice using microarrays at 5 and 16
weeks (Prieur et al. 2011). Another studymeasured the
abundance of non coding RNAs in the mice liver by
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sequencing (Yu-Han et al. 2019). Simultaneous pro-
!ling of gene expression from di"erent tissue in the
ob/ob is missing. Similarly, no dataset systematically
evaluated the e"ect of HFD on the mice compared to
the WT.

We generated a gene expression dataset in di"erent
wild-type (WT) and ob/ob mice tissues with a nor-
mal diet (ND) or high-fat diet (HFD). Changes at the
gene expression level of lipid metabolism could be
assessed using the epididymal fat, liver, and muscle
tissues while hormonal changes in the brain (hypotha-
lamus and hippocampus). We also expected to assess
the changes in expression in tissues with comorbidi-
ties in the model (heart and aorta). Researchers could
use this dataset to study the di"erence between normal
mice and those susceptible to weight gain. In addition,
the dataset can be used to study the response to HFD.
In each case, the response can be dissected at the tis-
sue level. Here, we present a description of the mice,
data generation, raw and processed data. Besides, we
provide a technical validation of the dataset.
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Materials andmethods

Animals and diet

Three-week-old male C57BL/6 mice and ob/ob mice
were purchased from Central Laboratory Animal
Inc. (Seoul, South Korea). Animal experiments were
performed in accordance with the National Insti-
tutes of Health guidelines on the use of laboratory
animals. The Animal Care Committee for Animal
Research at Gyeongsang National University approved
the study protocol (GNU-160530-M0025). The mice
were individually housed under a 12-h light/dark
cycle. C57BL/6 wild-type (WT) or ob/ob mice were
fed ad libitum with normal standard diet chow (ND,
n = 3) or a high-fat diet (HFD, n = 3, 60% kcal from
fat; Research Diet, Inc., New Brunswick, NJ, USA) for
20 weeks. The body fat contents of animals were quan-
ti!ed by EchoMRI (Whole Body Composition Ana-
lyzer, Houston, TX, USA). The overall experimental
scheme is depicted in Figure 1(a).

Measurement ofmetabolic parameters

After fasting overnight, Mice were euthanized using
intraperitoneal Zoletil (50mg/ml; Virbac Korea) and
Rompun (2.3mg/ml; Bayer Korea). A mouse of 60
grams received 30 ul Zoletil and 30 ul Rompun and
showed no movement at 2min and no response
to stimuli at 8min. Blood samples were collected
transcardially through the left ventricle with a 1-
mL syringe. Serum glucose, total cholesterol, alanine
aminotransferase (ALT), and aspartate aminotrans-
ferase (AST) levels were determined using the Green
Cross Reference Laboratory kits (Yongin-si, South
Korea).

Library preparation and sequencing

After blood collection, seven di"erent tissues of
from eachmouse: hippocampus, hypothalamus, heart,
aorta, liver, skeletal muscle (gastrocnemius muscle),
and epididymal fat pads, were quickly removed and
stored at −80◦C. Total RNA from each tissue was
isolated using the TRIzol reagent (Invitrogen, CA,
USA). Complementary DNA was then synthesized
using a reverse-transcription kit (Thermo Scienti!c,
Waltham, MA, USA), according to the manufacturer’s
instructions. The RNA-seq analyzes were performed
by C&KGenomics (C&KGenomics Inc., Seoul, South

Korea). The sequencing libraries were constructed
using Illumina’s TruSeq RNA Prep kit (Illumina Inc.,
San Diego, CA, USA), and DNA sequencing data were
generated using the NextSeq 500 platform (Illumina
Inc.).

Quality control assessment, alignment, and
counting

Quality assessment and control were applied to the raw
reads using Trimmomatic (Bolger et al. 2014). Adap-
tors, over-represented sequences, and low-quality
reads were removed. Raw reads were aligned to the
UCSC mouse genome mm10 using HISAT2 (Kim
et al. 2015). Aligned reads were counted in the same
genome known features using FeatureCount (Liao
et al. 2014). Feature counts to estimate the gene expres-
sion. Variance stabilization transformation (VST) was
applied using vst (Love et al. 2014). Known batch
e"ects were removed using removeBatchE"ect for
purposes of visualization, and unknown variables
were estimated SVA and added to the metadata table
(Ritchie et al. 2015; Leek et al. 2019). Transformed
counts, phenotype data, and features information were
packaged in a SummarizedExperiment object. Figure
1(b) shows the steps of the pre-processing and process-
ing pipeline.

Methods for technical validation

The technical validation of the data was performed
in two steps-!rst, the quality assessment and con-
trol of the raw and intermediate data (discussed in
Methods). Second, the validation of the experimen-
tal design and expected biology in the gene expression
and the external measurements (presented in detail in
thismanuscript). The transformed countswere used to
partition the variance in principal component analysis
and correlation analysis. Variance partitioning applies
a random-e"ects model to the data to estimate the
amount of variance in each gene explained by the
model variables (Ho"man and Schadt 2016). The top
1000 genes whose variance is explained by a certain
variable were used to calculate over-representation
in gene ontology terms (Ashburner et al. 2000, may;
Yu et al. 2012). Principal component analysis repre-
sents the variance between the samples in two dimen-
sions. Pearson’s correlation coe#cient was calculated
between pairs of variables to decide how well the gene
expression in one sample/group resembles others.
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Figure 1. Experimental designanddataprocessingpipeline. (a)Wild-type (WT)mice (n = 6)weredivided into twoequal groups and fed
either a normal diet (ND) or a high-fat diet (HFD). An equal number of ob/obmice (n = 6) fed either NDor HFD. After 20weeks,micewere
sacrificed for tissue collection. Six types of tissuewere collected fromeachmouse, including the hippocampus, hypothalamus, heart, liver,
aorta, muscle, and epididymis. (b) Raw reads were aligned to the mouse genome (mm10) using HISAT2. Reads were counted in known
features using FeatureCounts. Counts were packaged along with phenotype and feature information in a Bioconductor experimental
data package (ObMiTi).

Table 1. Samples and experimental groups.

Group Diet Tissue (N) Samples (N)

ob/ob HFD 7 21
ND 7 21

WT HFD 7 21
ND 7 21

Data Records

This dataset includes 84 samples from twelve mice in
four groups of three and seven tissue each. Raw data
were deposited in the short read archive (SRA) under
the project number (PRJNA701378) and the processed
data in the gene expression omnibus (GEO) under the
series number (GSE167264). Table 1 summarizes the
data records.

Dataset validation

Quality assessment of raw, aligned, and assigned
reads

To assess the quality of the sequencing data, we exam-
ined the reads at di"erent steps of the pipeline. Raw
reads were of su#cient quality, with most reads (95%)
above 30/40 quality score (Figure 2(a)). The overall

alignment of the reads was always above 95%, with
only a few samples below that (Figure 2(b)). Con-
cordance between pairs of reads was similarly high
(>65%) for most samples. The majority of reads
(>70%) were assigned to known features (Figure
2(c)). Causes for the assignment included ambiguity,
multi-mapping, or unmapped reads, which were few.

Tissue explains the variance between samples

After removing the batch e"ects, the genetic back-
ground of the individual mice did not contribute
greatly to the variance in gene expression as indicated
by principal component analysis (Figure 3(a)). WT
mice fed ND were clustered together and were sig-
ni!cantly distinct from other mice. In contrast, the
mice on HFD showed the greatest variance. Ob/ob
mice on either diet were similar to each other. A
large percentage of the variance between the sam-
ples in a given tissue (Epididymal fat pads) was
explained by two experimental variables mice group
and diet.

The greatest amount of variance in gene expres-
sion across tissues was explained by the tissue variable
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Figure 2. Quality assessment of the raw, aligned and counted reads. (a) A histogram of the ratio of reads with quality scores above 20
(red) or 30 (blue). (b) A histogram of the ratio of reads with a given overall alignment (purple), multiple alignments (blue), disconcordant
(green), or concordant aligned pairs (red). (c) A histogramof the ratio of reads thatwere assigned to features (brown) or unassigned either
due to ambiguity (red), no features (blue), multiple mapping (green), or unmapped (move).

Figure 3. Explaining and partitioning variance between the experimental groups. (a) Principal component (PC) analysis of the read
counts in coding genes in mice (n = 12) from Epididymal fat pad samples Experimental groups of different genotypes and diets are
represented as colors. (b) The estimated percentage of variance in read counts of coding genes by variables in the random-effects fixed
model. (c) Pearsons correlation coefficients between scaled gene expression in all samples (n = 84) are shown as color values (0, blue
and 1, red).Skeletal muscle; Sk, Hippocampus; Hi, Hypothalamus; Hy, Aorta; Ao, Heart; He, Epididymal fat pad; Ep, Liver; Li.

(Figure 3(b)). Indeed, gene expression from the same
tissues was strongly correlated across groups of mice
and diets (Figure 3(c)). This was less obvious in adi-
pose and skeletal muscle, where the greatest di"erence
between the experimental groups is expected. These
observations illustrate a critical aspect of this dataset,
where any downstream analysis should take the tissue
variable into account.

Genes whose variance is mostly explained by dif-
ferent variables were over-represented in di"erent
categories of gene ontology terms (Table 2). Tissue
explained the variance of genes in terms related to
cellular components and processes of particular cell
types, for example, neurons (synapse, axon, dendrite),
liver, and fat cells (fatty acidmetabolic process and per-
oxisome). By contrast, the genes explained by group
variables were over-represented in terms related to
nucleic acid maintenance and transcription (DNA

Table 2. Over-representation of genes explained by variables in
gene ontology terms.

Variable Term Ratio

Diet immune system process 0.06
innate immune response 0.05
immune response 0.04
inflammatory response 0.04
chromosome 0.04

Group cellular response to DNA damage stimulus 0.07
mRNA processing 0.06
RNA splicing 0.05
nuclear speck 0.05
DNA repair 0.05

Tissue axon 0.09
postsynaptic membrane 0.07
postsynaptic density 0.07
nervous system development 0.07
chemical synaptic transmission 0.06

repair, RNA splicing, and helicase activity). Finally,
immune-related terms had genes whose variance was
explained by the diet variable over-represented.
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Figure 4. Biological measurement, blood work, and echo MRI measurements. (a) The final weight (g) of the mice (n = 12) at the end of
the study period. (b) Micemeasurements of liver functions AST (U/L) and ALT (U/L), blood glucose (mg/dL) and total cholesterol (mg/DL).
(c) Mice body composition is shown as the ratio of lean/fat and free/total water as measured by echo MRI.

Gene expression re!ects a divergent genetic
response to diets

Wemeasured severalmetabolic parameters of themice
in this study including body weight, body composi-
tion and blood levels of glucose, cholesterol, ALT and
AST. As expected, the ob/obmice and the HFD groups
were heavier (Figure 4(a)). The liver function, blood
glucose, and total cholesterol were worse in the HFD
groups in both types of mice, although the di"erence
compared to ND were more apparent in the case of
theWTmice (Figure 4(b)). A similar pattern emerged
in the composition of the body as measured by echo-
MRI; HFD groups faired worse in terms of the per-
centage of body fat and free water compared to mice
on ND (Figure 4(c)). This observation supports the
notion that ob/ob and HFD groups accumulate more
fat and weigh more.

The arcuate nucleus in the hypothalamus is sense-
tive to leptin and ghrelin (Nogueiras et al. 2008). The
two hormones signal through speci!c receptors to reg-
ulate satiety and food intake through two other sub-
stances, NYP and AGRP (Figure 5(a)). ob/obmice are
de!cient in Leptin, but it is unclear whether leptin is
involved in the pathology of obesity in normal mice
(Mayer et al. 1953). Leptin receptor (Lpr) seems to
be completely shut down in ob/ob mice (Figure 5(b)).
Only WT mice on ND seem to have relatively higher
expression of the receptor compared toHFD.The anal-
gous ghrelin receptor and e"ector were also regulated
between the experimental groups (Figure 5(c)). Due
to the lack of the inhibitory signal or the active stim-
ulatory signals, NYP and AGRP was more expressed
in ND, especially in WT mice (Figure 5(d)). Finally,
we should consider the fact that ob/ob mice exhibit

changes in key signaling pathways at di"erent ages,
often in the formof adaptation or tolerance to de!cient
leptin or excess insulin (Danieisson et al. 1968).

Insulin signaling and glucose utilization are also
dysregulated in ob/ob mice (Wang et al. 2019). Nor-
mally, insulin signals through its receptor and sub-
strate to induce the formation of transport vesicles
(Figure 5(c)). These vesicles transport glucose from the
membrane transporters (Vargas and Carrillo Sepul-
veda 2019). As expected, we observed dysregulation in
ob/obmice similar to that, if not more extreme, of the
response to HFD in WT mice. Insulin receptor sub-
strate (Irs1), glucose transporter 4 (Slc2a4), Prkaa1,
and Pik3r1 were down-regulated ob/ob adipose tis-
sue and WT HFD fed mice compared to WT mice on
ND (Figure 5(d)). A full list of di"erentially expressed
genes in each tissue between genotypes and diets is
available as an additional !le (See data availability stat-
ment). In summary, the dataset shows a gene expres-
sion pattern re$ective of insulin resistance and low
glucose utilization in the adipose tissue.

Usage notes

The processed data are distributed as Bioconductor
experimental data (ObMiTi). The package contains a
SummarizedExperiment object. This object contains
three tables. (1) Read counts of the features (row) in
samples (columns). (2) Phenotype data describing the
variables and the measurements of the samples. (3)
Information about the features, including identi!ers,
biotypes, and genomic coordinates. The object was
optimized for speedy and $exible downstream analysis
using R/Bioconductor packages.
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Figure 5. Leptin and Insulin signaling in hypothalamus and adipose tissue. (a) A diagram of leptin signaling in the hypothalamus. (b)
Gene expression (low, blue and high, red) of coding genes in the signaling pathway of in the hypothalamus of WT and ob/obmice with
ND or HFD. (c) A diagram of insulin signaling in the adipose tissue. (d) Gene expression (low, blue and high, red) of coding genes in
the signaling pathway of in the Epididymal fat pads of WT and ob/ob mice with ND or HFD. Leptin Receptor (LEPR), Neuropeptide Y
(NPY), Ghrelin Secretagogue Receptor (GHSR), Agouti Related Neuropeptide (AGRP), Insulin (Ins1), Insulin Receptor Substrate 1 (IRS1),
Phosphoinositide-3-Kinase Regulatory Subunit 1 (Pik3r1), Solute Carrier Family 2 Member 2 & 4 (Slc2a2 & 4), Solute Carrier Family 2
Member 2 (Slc2a2), Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 & 2 (Prkaa1 & 2).

Limitations

Some researchers take issue with using the ob/ob
mouse as a model for obesity. This is because the etiol-
ogy of the disease in thismouse and human is di"erent.
Nonetheless, we believe these mice can help study the
biology of di"erent tissue changes once the condition
is developed. It is also crucial for studying the role of
hormone imbalance (leptin de!ciency in particular) in
predisposing the animal to weight grain or abnormal
storage of fat.

The small sample size in this experiment makes
it hard to estimate the occurring natural variance
between the mice. However, the dataset can help !nd
large e"ect sizes or as a starting point of investigation
to guide the design of future experiments. In addition,
this dataset lacks protein level measurement. Consid-
ering the nature of hormonal changes associated with
the model, many of the relevant biology can only be
studied at the level of protein. A large proportion of the
variance between the samples was explained by the tis-
sue variable. This is to be expected in gene expression
data from di"erent organs. Limiting the analysis to a
single tissue can avoid the issue. However, across tis-
sue comparisons require specialized methods to either
adjust for the tissue of origin’s e"ect or remove it
entirely.
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