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Abstract 
Researchers use ChIP binding data to identify potential transcription 
factor binding sites. Similarly, they use gene expression data from 
sequencing or microarrays to quantify the effect of the transcription 
factor overexpression or knockdown on its targets. Therefore, the 
integration of the binding and expression data can be used to 
improve the understanding of a transcription factor function. Here, we 
implemented the binding and expression target analysis (BETA) in an 
R/Bioconductor package. This algorithm ranks the targets based on 
the distances of their assigned peaks from the transcription factor 
ChIP experiment and the signed statistics from gene expression 
profiling with transcription factor perturbation. We further extend 
BETA to integrate two sets of data from two transcription factors to 
predict their targets and their combined functions. In this article, we 
briefly describe the workings of the algorithm and provide a workflow 
with a real dataset for using it. The gene targets and the aggregate 
functions of transcription factors YY1 and YY2 in HeLa cells were 
identified. Using the same datasets, we identified the shared targets 
of the two transcription factors, which were found to be, on average, 
more cooperatively regulated.
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Introduction
The binding of a transcription factor to a genomic region (e.g., gene promoter) can have the effect of induc-
ing or repressing its expression Latchman1. The binding sites can be identified using ChIP experiments. 
High through-put ChIP experiments produce hundreds or thousands of binding sites for most transcription  
factors Johnson et al.2. Therefore, methods to determine which of these sites are true binding sites and whether 
they are functional or not are needed Ucar et al.3. On the other hand, perturbing the transcription factor by  
over-expression or knockdown and measuring the gene expression changes provide valuable information on the 
function of the transcription factor Tran et al.4. Methods exist to integrate the binding data and the factor pertur-
bation gene expression to predict the real target regions (e.g., genes)5,6. This article presents a workflow for 
using the target package to integrate binding and expression data to predict the shared targets and the combined  
function of two transcription factors.

To illustrate the utility of this workflow, we applied it to the binding and expression data of the transcrip-
tion factors YY1 and YY2. We asked whether the two factors cooperate or compete on their shared targets in  
HeLa cells.

Methods
Implementation
We developed an open-source R/Bioconductor package target to implement BETA for predicting direct tran-
scription factor targets from binding and expression data. The details of the algorithm were described here 
Wang et al.6. In addition, our implementation extends BETA to apply for transcription factor combinations  
(Ahmed et al.7). Briefly, we identify the transcription factor potential binding sites by ChIP-sequencing and  
gene expression under factor perturbation by microarrays or sequencing. Next, we score the peaks based on 
their distances to the transcription start sites. The sum of the scores of the individual peaks in a certain region 
of interest is the region’s regulatory potential. The signed statistics (fold-change or t-statistics) from the  
differential gene expression of the transcription factor perturbation reflect the transcription factor effects. The  
product of the ranks of the regulatory potential and the signed statistics is the final rank of the regions.

To predict the combined function of two transcription factors, two sets of data are required. The overlapping 
peaks are the potential binding sites. The product of the two signed statistics is the transcription factor function. 
When the two transcription factors agree in the direction of the regulation of a region where they both bind, they 
could be said to cooperate on this region. When the sign is opposite, they could be said to regulate that region  
competitively.

The package leverages the Bioconductor data structures such as GRanges and DataFrame to provide fast and  
flexible computation on the data Huber et al.8. Similar to the original python implementation, the input data are the 
identified peaks from the ChIP-Seq experiment and the expression data from RNA-Seq or microarrays perturbation 
experiment. The final output is the peaks associated with the transcription factor binding and the predicted direct  
targets. We use the terms “peaks” to refer to the GRanges object that contains the coordinates of the peaks.  
Likewise, we use the term “region” to refer to a similar object that contains the information on the regions of  
interest; genes, transcripts, promoter regions, etc. In both cases, additional information on the ranges can be added to 
the object as metadata.

Operation
The algorithm was implemented in R (>= 3.6) and should run on any operating system. Libraries required for 
running the workflow are listed and loaded below. Alternatively, a docker image is available with R and the  
libraries installed on an Ubuntu image: https://hub.docker.com/r/bcmslab/target_flow

           Amendments from Version 2
This revised version of the article contains a few minor corrections

- The regions of interest were extended to 100kb upstream and 200bp downstream from the transcription start sites.

- The section “Predicting gene targets of individual transcription factors”, was updated to briefly describe what the two 
main functions do.

- On several occasions, we used the term “transcription factor” instead of “factor”.

Any further responses from the reviewers can be found at the end of the article

REVISED
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# load required libraries
library(GenomicRanges)
library(Biostrings)
library(rtracklayer)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(BSgenome.Hsapiens.UCSC.hg19)
library(org.Hs.eg.db)
library(tidyverse)
library(BCRANK)
library(seqLogo)
library(target)

Use case
YY1 and YY2 belong to the same family of transcription factors. YY1 is a zinc finger protein that directs  
histone deacetylase and acetyltransferases of the promoters of many genes. The protein also binds to the enhancer 
regions of many of its targets. The binding of YY1 to the regulatory regions of genes results in the induction  
or repression of their expression. YY2 is a paralog of YY1. Similarly, it is a zinc finger protein with both acti-
vation or repression functions on its targets. We will attempt to answer the following questions using the  
target analysis: Do the two transcription factors share the same target genes? What are the consequences of 
the binding of each transcription factor on its targets? If the two transcription factors share binding sites, what  
is the function of the two transcription factors binding to these sites?

To answer these questions, we use publicly available datasets to model the binding and gene expression under 
the transcription factors perturbations (Table 1). This dataset was obtained in the form of differential expression 
between the two conditions from KnockTF Feng et al.9. The first dataset is gene expression profiling using micro-
arrays of YY1/YY2 knockdown and control HeLa cells. Next, the binding sites of the transcription factors in 
HeLa cells were determined using two ChIP-Seq datasets. The ChIP peaks were acquired in the form of bed files  
from ChIP-Atlas Oki et al.10. Finally, we used the UCSC hg19 human genome to extract the genomic annotations.

Briefly, we first prepared the three sources of data for the target analysis. Then we predict the specific targets for 
each individual transcription factor. Third, we predict the combined function of the two transcription factors on 
the shared target genes. Finally, we show an example of a motif analysis of the competitively and cooperatively  
regulated targets.

if(!file.exists('data.zip')) {
  # download the manuscript data
  download.file('https://ndownloader.figshare.com/articles/10918463/versions/1',
                destfile = 'data.zip')

  # decompress file
  unzip('data.zip', exdir = 'data')
}

Table 1. Expression and binding data of YY1 and YY2 in 
HeLa cells.

GEO ID Data Type Design Ref.

GSE14964 Microarrays YY#-knockdown Chen et al.11

GSE31417 ChIP-Seq YY1 vs input Michaud et al.12

GSE96878 ChIP-Seq YY2 vs input Wu et al.13
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Preparing the binding data
The ChIP peaks were downloaded in the form of separate bed files for each transcription factor. We first locate 
the files in the data/ directory and load the files using import.bed. Then the data is transformed into a  
suitable format, GRanges. The resulting object, peaks, is a list of two GRanges items, one for each factor.

# locate the peaks bed files
peak_files <- c(YY1 = 'data/Oth.Utr.05.YY1.AllCell.bed',
                YY2 = 'data/Oth.Utr.05.YY2.AllCell.bed')

# load the peaks bed files as GRanges
peaks <- map(peak_files, ~GRanges(import.bed(.x)))

Preparing the expression data
The differential expression data were downloaded in tabular format. After locating the files in data/, we read the 
files using read_tsv and select and rename the relevant columns. The resulting object, express, is a list  
of two tibble items.

# locate the expression text files
expression_files <- c(YY1 = 'data/DataSet_01_18.tsv',
                      YY2 = 'data/DataSet_01_19.tsv')

# load the expression text files
express <- map(expression_files,
               ~read_tsv(.x, col_names = FALSE) %>%
                 dplyr::select(2, 3, 7, 9) %>% #9
                 setNames(c('tf', 'gene', 'fc', 'pvalue')) %>%
                 filter(tf %in% c('YY1', 'YY2')) %>%
                 na.omit())

The knockdown of either transcription factor in HeLa cells seems to change the expression of many genes in 
either direction (Figure 1A&B). Moreover, the changes resulting from the separate knockdown of the transcription 
factors are correlated (r = 0.56, P < 0.0001) (Figure 1C). These observations suggest that many of the regulated 
genes are shared targets of the two transcription factors, or they respond similarly to their perturbation of either  
factor.

Figure 1. Differential expression between transcription factor knockdown and control HeLa cells. Gene 
expression was compared between transcription factors knockdown and control HeLa cells. The fold-change  
and p-values of (A) YY1- and (B) YY2-knockdown are shown as volcano plots. (C) Scatter plot of the fold-change of  
the YY1- and YY2-knockdown.
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# Figure 1
par(mfrow = c(1, 3))

# volcano plot of YY1 knockdown
plot(express$YY1$fc,
     -log10(express$YY1$pvalue),
     xlab = 'Fold-change (log_2)',
     ylab = 'P-value (-log_10)',
     xlim = c(-4, 4), ylim = c(0, 6))
title('(A)')

# volcano plot of YY2 knockdown
plot(express$YY2$fc,
     -log10(express$YY2$pvalue),
     xlab = 'Fold-change (log_2)',
     ylab = 'P-value (-log_10)',
     xlim = c(-4, 4), ylim = c(0, 6))
title(’(B)’)

# plot fold-change of YY1 and YY2
plot(express$YY1$fc[order(express$YY1$gene)],
     express$YY2$fc[order(express$YY2$gene)],
     xlab = 'YY1-knockdown (log_2)',
     ylab = 'YY2-knockdown (log_2)',
     xlim = c(-4, 4), ylim = c(-4, 4))
title(’(C)’)

Preparing genome annotation
express records the gene information using the gene Symbols. We mapped the Symbols to the Entrez IDs 
before extracting the genomic coordinates. To do that, we use the org.Hs.eg.db to convert between the  
identifiers. Next, we use the TxDb.Hsapiens.UCSC.hg19.knownGene to get the genomic coordinates for  
the transcripts and extend them to 100kb upstream and 200bp downstream from the transcription start sites.

# load genome data
symbol_entrez <- AnnotationDbi::select(org.Hs.eg.db,
                        unique(c(express$YY1$gene)),
                        'ENTREZID', 'SYMBOL') %>%
  setNames(c('gene', 'gene_id'))

# format genome to join with express
genome <- promoters(TxDb.Hsapiens.UCSC.hg19.knownGene,
            upstream = 100000, # (default) downstream = 200,
            columns = c('tx_id', 'tx_name', 'gene_id')) %>%
  as_tibble() %>% mutate(gene_id = as.character(gene_id))

The resulting object, genome, from the previous step is a tibble that shares the column gene_id with  
the expression data express. Now the two objects can be merged. The merged object, regions, is  
similarly a tibble containing genome and expression information of all common genes.

# make regions by merging the genome and express data
regions <- map(express,
               ~inner_join(genome, symbol_entrez) %>%
                 inner_join(.x) %>%
                 makeGRangesFromDataFrame(keep.extra.columns = TRUE))
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Predicting gene targets of individual transcription factors
The standard target analysis identifies associated peaks using associated_peaks and direct targets using 
direct_targets. associated_peaks calculates and transforms the distances between the peaks and 
TSSs. Then it assigns the peaks to the nearst transcript. direct_targets calculates the final gene ranks 
based on the distances and the change in gene expression. The inputs for these functions are the objects peaks  
and regions from the previous steps in addition to the column names for regions regions_col or the 
region and the statistics column stats_col, which is the fold-change in this case. The resulting objects are  
GRanges for the identified peaks assigned to the regions, ap, or the ranked targets. Several columns are added  
to the metadata objects of the GRanges to save the output.

# get associated peaks
ap <- map2(peaks, regions,
           ~associated_peaks(peaks=.x,
                             regions = .y,
                             regions_col = 'tx_id'))

# get direct targets
dt <- map2(peaks, regions,
           ~direct_targets(peaks=.x,
                            regions = .y,
                            regions_col = 'tx_id',
                            stats_col = 'fc'))

To determine the dominant function of a transcription factor, we divide the targets by the direction of the 
effect of transcription factor knockdown. We group the targets by the change in gene expression (regulatory 
potential). We use the empirical distribution function (ECDF) to show the fraction of targets with a specified  
regulatory potential or less. Because we use the ranks rather than the absolute value of the regulatory poten-
tial, the lower the rank, the higher the potential. Then, {we compare} the groups of targets to each other or to a  
theoretical distribution.

# Figure 2
par(mfrow = c(1, 3))

# plot distance by score of associate peaks
plot(ap$YY1$distance, ap$YY1$peak_score,
     xlab = 'Distance', ylab = 'Peak Score',
     main = '(A)')
points(ap$YY2$distance, ap$YY2$peak_score)

# make labels, colors and groups
labs <- c('Down', 'None', 'Up')
cols <- c('green', 'gray', 'red')

# make three groups by quantiles
groups <- map(dt,~{
  cut(.x$stat, breaks = 3, labels = labs)
})

# plot the group functions
pmap(list(dt, groups, c('(B)', '(C)')), function(x, y, z) {
      plot_predictions(x$score_rank,
                       group = y, colors = cols, labels = labs,
                       xlab = 'Regulatory Potential', ylab = 'ECDF')
      title(z)
    })
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The scores of the individual peaks are a decreasing function of the distance from the transcription start  
sites— the closer the transcription factor binding site from the start site, the higher the score. The distribu-
tion of these scores is very similar for both transcription factors (Figure 2A). The ECDF of the down-regulated of  
YY1 is higher than that of up-and none-regulated targets (Figure 2B). Therefore, the absence of YY1 on its 
targets results in aggregate in their downregulation. If indeed these are true targets, then we expect YY1 to 
induce their expression. The opposite is true for YY2, where more high-ranking targets are up-regulated by  
the transcription factor knockdown (Figure 2C).

# Table 2
# test individual factor functions
map2(dt, groups,
     ~test_predictions(.x$rank,
                       group = .y,
                       compare = c('Down', 'Up')))

To formally test these observations, we use the Kolmogorov-Smirnov (KS) test. First, we compare the distributions  
of the two groups for equality. If one lies on either side of the other, then they must be drawn from different  
distributions. Here, we contrast the up and down-regulated functions for both transcription factors (Table 2).  
In both cases, the  distributions of the two groups were significantly different from one another.

Predicting the shared targets of two transcription factors
Using target to predict the shared target genes and the combined function of the two transcription factors 
is a variation of the previous analysis. First, the shared/common peaks are generated using the overlap of their 
genomic coordinates, subsetByOverlaps. Second, Instead of one, two columns for the differential expres-
sion statistics, one for each transcription factor is needed; these are supplied to the argument stats_col in  
the same way. Here, common_peaks and both_regions are the main inputs for the analysis functions.

Table 2. Testing for statistical significance of the regulated 
gene groups.

Factor Statistic P.value Method Alternative

YY1 0.224 2.2e-16 Two-sample KS test two-sided 

YY2 0.149 2.5e-15 Two-sample KS test two-sided 

Figure 2. Predicted functions of YY1 and YY2 on their specific targets. Bindings peaks of the transcription factors 
in HeLa cells were determined using ChIP-Seq. Distances from the transcription start sites, and the transformed 
distances of the (A) YY1 and YY2 peaks are shown. The regulatory potential of each gene was calculated using target. 
Genes were grouped into up, none, or down-regulated based on the fold-change. The empirical cumulative distribution 
functions (ECDF) of the groups of (C) YY1 and (C) YY2 targets are shown at each regulatory potential rank.
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# merge and name peaks
common_peaks <- GenomicRanges::reduce(subsetByOverlaps(peaks$YY1, peaks$YY2))
common_peaks$name <- paste0('common_peak_', 1:length(common_peaks))

# bind express tables into one
both_express <- bind_rows(express) %>%
  nest(fc, pvalue, .key = 'values_col') %>%
  spread(tf, values_col) %>%
  unnest(YY1, YY2, .sep = '_')

# make regions using genome and expression data of both factors
both_regions <- inner_join(genome, symbol_entrez) %>%
  inner_join(both_express) %>%
  makeGRangesFromDataFrame(keep.extra.columns = TRUE)

# get associated peaks with both factors
common_ap <- associated_peaks(peaks = common_peaks,
                              regions = both_regions,
                              regions_col = 'tx_id')

# get direct targets of both factors
common_dt <- direct_targets(peaks = common_peaks,
                            regions = both_regions,
                            regions_col = 'tx_id',
                            stats_col = c('YY1_fc', 'YY2_fc'))

The output, associated_peaks, is similar to before. direct_targets is the same, but the stat  
and the stat_rank columns carry the product and the rank of the two statistics provided in the previous step.

We can also visualize the output in a similar way. The targets are divided into three groups based on the sta-
tistics product. When the two statistics agree in the sign, the product is positive. This means the knockdown 
of either transcription factor results in the same direction change in the target gene expression. Therefore, the 
two transcription factors would cooperate if they bind to the same site on that gene. The reverse is true for  
targets with oppositely signed statistics. The two transcription factors would be expected to compete on these  
targets for inducing opposing changes in the expression.

# Figure 3
par(mfrow = c(1, 2))

# plot distiace by score for associated peaks
plot(common_ap$distance,
     common_ap$peak_score,
     xlab = 'Distance',
     ylab = 'Peak Score')
title('(A)')

# make labels, colors and gorups
labs <- c('Competitive', 'None', 'Cooperative')
cols <- c('green', 'gray', 'red')

# make three groups by quantiles
common_groups <- cut(common_dt$stat,
                     breaks = 3,
                     labels = labs)

# plot predicted function
plot_predictions(common_dt$score_rank,
                 group = common_groups,
                 colors = cols, labels = labs,
                 xlab = 'Regulatory Interaction', ylab = 'ECDF')
title('(B)')
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The common peak distances and scores take the same shape (Figure 3A). Furthermore, the two transcription  
factors seem to cooperate on more of the common target than any of the two other possibilities (Figure 3B). 
This observation can be tested using the KS test. The curve of the cooperative targets lies above that of none and  
competitively regulated targets (Table 3).

# Table 3
# test factors are cooperative
test_predictions(common_dt$score_rank,
                 group = common_groups,
                 compare = c('Cooperative', 'None'),
                 alternative = ’greater’)

# test factors are more cooperative than competitive
test_predictions(common_dt$score_rank,
                 group = common_groups,
                 compare = c('Cooperative', 'Competitive'),
                 alternative = 'greater')

Binding motif analysis
The users can perform any number of downstream analyses on the final output. For example, we could apply bind-
ing motif analysis to the groups of regulated targets. In this example, all the motif analysis itself is handled by 
the BCRANK package Ameur et al.14. Here, we explain how to prepare the input from the shared peaks and target  
objects produced in the last step.

Table 3. Testing for statistical significance of combined 
functions of the two transcription factors.

Compare Statistic P.value Method Alternative

Coop vs None 0.168 1.5e-30 KS test The CDF of x lies 
above that of y 

Coop vs Comp 0.151 2.2e-16 KS test The CDF of x lies 
above that of y 

Figure 3. Predicted function of YY1 and YY2 on their shared targets. Shared bindings sites of YY1 and YY2 in 
HeLa cells were determined using the overlap of the individual transcription factor ChIP-Seq peaks. (A) Distances from 
the transcription start sites, and the transformed distances of the shared peaks are shown. The regulatory interaction 
of each gene was calculated using target. Genes were grouped into cooperatively, none, or competitively regulated 
based on the product of the fold-changes from YY1- and YY2-knockdown. (B) The empirical cumulative distribution 
functions (ECDF) of the targets groups are shown at each regulatory potential rank.
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First, we extract the transcript IDs of the targets in their respective groups. Then the peaks assigned to these targets  
are ordered and sliced.

# group peaks by their assigned targets
peak_groups <- split(common_dt$tx_id, common_groups)

# reorder peaks and get top n peaks
peak_groups <- lapply(peak_groups, function(x) {
    # get peaks in x targets group
    p <- common_ap[common_ap$assigned_region %in% unique(x)]

    # order peaks by score
    p <- p[order(p$peak_score, decreasing = TRUE)]

    # get n top peaks
    p[seq_len(ifelse(length(p) > 50, 50, length(p)))]
})

The input for bcrank is a fasta file with the sequence of the regions to look for frequent motifs. We used 
the BSgenome.Hsapiens.UCSC.hg19 to extract the sequences of the common peaks in the competitive  
and cooperative target groups. The sequences are first written to a temporary file and feed to the search function.

bcout <- map(peak_groups[c('Competitive', 'Cooperative')], ~{
    # extract sequences of top peaks from the hg19 genome
    pseq <- getSeq(BSgenome.Hsapiens.UCSC.hg19, names = .x)

    # write sequences to fasta file
    tmp_fasta <- tempfile()
    writeXStringSet(pseq, tmp_fasta)

    # set random see
    set.seed(1234)

    # call bcrank with the fasta file
    bcrank(tmp_fasta, silent = TRUE)
})

The sequences in the search path of the regions of interest are shown in (Figure 4). In the competitively reg-
ulated regions, one sequence was more frequent than all other sequences. By contrast, no sequence was  
uniquely frequent in the regions of cooperative targets.

# Figure 4
par(mfrow = c(1, 2))
# plot the occurrences of consensus sequesnce in the regions
map2(bcout, c('(A)', '(B)'), ~{
     plot(toptable(.x, 1))
     title(.y)
})

The most frequent motifs in the two groups are shown as seq logos using the seqLogo package (Figure 5).

# Figure 5
# plot the sequence of the predicted motifs
map(bcout, c('(A)', '(B)'), ~{
    seqLogo(pwm(toptable(.x, 1)))
    title(.y)
})
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Figure 5. Predicted motifs of the cooperative and competitive binding sites.  The position weight matrices of 
the most frequent motifs in the (A) competitively and (B) cooperatively regulated regions were calculated and shown 
as sequence logos. y-axis represents the information content at each position. The size of each letter represents the 
frequency in which the letter occurs at that position.

Figure 4. Occurrences of consensus sequences in the ranked regions. The number of occurances of the sequences 
in the search path in the regions of (A) competitively and (B) cooperatively regulated regions.

Summary
In this article, we present a workflow for predicting the direct targets of a transcription factor by integrating  
binding and expression data. The target package implements the BETA algorithm ranking gene targets based 
on the distances of the ChIP peaks of the transcription factor relative to the TSSs of the genes and the differen-
tial expression of the transcription factor perturbation. To predict the combined function of two transcription factors,  
two sets of data are used to find the shared peaks and the rank product of their differential expression statistics.

Data availability
All data underlying the results are available as part of the article and no additional source data are required.

Software availability
Software available from: https://doi.org/doi:10.18129/B9.bioc.target15

Source code available from: https://github.com/MahShaaban/target 

Archived source code as at time of publication: https://doi.org/doi:10.18129/B9.bioc.target15

License: GPL-3
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In this paper, Ahmed and Kim present the target R package, which implements the BETA 
algorithm and extends its functionality to predict combined targets and functions of two different 
transcription factors (TF). By using transcription factor binding data (ChIP-seq) and gene 
expression data when the TF is perturbed, they are able to predict the gene targets of a single or a 
pair of TFs. 
 
This paper raised some major concerns that need to be addressed by the authors:

Regarding the actual package code, the distance calculation doesn’t measure the actual 
distance between peaks and TSS. The code of your find_distance() function subtracts the 
peak center from the region center to obtain the distance between these two features. This 
is not the same as the distance from the peak to the TSS, which is what this variable should 
be measuring according to your text “The scores of individual peaks are decreasing function 
of the distance from the transcription start sites”, your vignette “find_distance: calculate the 
distance between the peaks and the regions of interest, e.g. transcription start sites (TSS).” 
and the original method publication “∆ is the exact distance between a binding site and the 
TSS”. An easy way to fix this is to provide different arguments for peak and regions “how”, so 
the user can for example select how_peaks=”center” and how_regions=”end”. In the specific 
case of the code you show in this paper, those parameters would return the actual distances 
between peaks and TSS. 
 

1. 

Related to the previous point, the parameter downstream in the function promoters() is set 
to 200 by default, so the width of the regions you are generating in the first chunk of code 
in page 6 actually have a width of 100,200bp. You should set this argument to 0 to actually 
obtain 100kb windows upstream of TSS. 
 

2. 

YY1 and YY2 might not be the best examples to use for extracting conclusions on gene 
targets and the combined action of both TFs. Besides YY1 activity as a TF, it can also interact 

3. 
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with chromatin modifiers and direct them to specific regions of the genome 1. It has also 
been identified as a structural factor that regulates the formation and DNA loops 2. Thus, 
the changes in gene expression observed when perturbing this TF might not all be 
associated with its activity as a TF, which is the main focus of this package. 
 
The section on the binding motif analysis is quite interesting in terms of what to do after 
performing the analysis with the R target package. However, I think it would be interesting 
to develop it a little bit more, maybe associate the sequences present in the different 
groups of regulated targets to actual transcription factors to see if there is a common 
regulatory pathway to these targets. 
 

4. 

Regarding the general text, and specifically the section “Predicting gene targets of 
individual factors”, I feel that the description of the main package functionality is too 
technical and not very informative. The authors describe all the arguments that can be 
provided to the different functions and the object classes that come out of them, but this 
description is already in the package manual. Instead of talking about the arguments and 
object classes, I would briefly describe what they do and how they do it, so readers can 
easily follow the methods without the need to read the original BETA publication or the 
package vignette. 
 

5. 

Related to point 3, the datasets used in this paper are different from the ones used in the 
vignettes and included within the package and I wasn’t able to find it on the GEO site either. 
I would recommend providing this data either within the package or in the docker image 
they already created. This would facilitate the reproduction of the results presented in this 
paper. 
 

6. 

The authors keep referring to transcription factors as “factors”, which might induce 
confusion when reading the article. They write “Transcription Factors” (or the abbreviation 
TF) to differentiate them from the broad and diverse meanings of “factors”. 
 

7. 

When revising the vignette I noticed that it’s missing the steps for preparing the data gene 
expression data, specifically the set to create windows upstream of TSS. When they load the 
gene expression object with (data("real_transcripts")) the windows are already present. This 
is misleading for users that are following the vignette as they might miss this specific step 
and they will not be able to get the correct results when reproducing it with their own data. 
 

8. 

In page 5, the authors mention that the changes in expression resulting from separate KD 
of YY1 and YY2 are correlated, but they do not provide any statistical test to confirm this. 
They should at least perform a correlation test and show the p-value to make this 
affirmation.  
 

9. 

There are some sentences in the text that are difficult to understand. The authors should 
rewrite them to ensure that the readers can follow the text. Some examples are: 

10. 

Missing citations for “KnockTF” and “ChIP-Atlas” in p.4. 
 

○

“We used the USSC hg19 human genome” [p. 4], should be “UCSC”. 
 

○

“We first locate the files in the data/ directory” [p. 4], shouldn’t it be “save”? ○
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“They respond similarly to their perturbation of either factor” [p.5] should be “the 
perturbation”. 
 

○

“They need to be mapped to the EN-TREZIDS” [p.5] should be “ENTREZ IDs” 
 

○

“get the genomic coordinates for the transcripts and resize them to 100kb upstream” [p.5]. 
The authors should rephrase this, as they are not resizing the transcripts but rather 
generating 100kb windows upstream of their TSS. 
 

○

“we divide the targets by the direction of the effect of knock-down of the factor on the 
expression of the target” [p.6]. The authors should rephrase this sentence, as it is very long 
and difficult to follow. 
 

○

“The ECDF of the down-regulated of YY1 is higher than that [...]”. This whole paragraph it’s 
difficult to understand, the authors should rephrase it.

○
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Is the rationale for developing the new software tool clearly explained?
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Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes
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expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 09 Nov 2021
Mahmoud Ahmed, Gyeongsang National University School of Medicine, Jinju, South Korea 

The solution referred to by the reviewer is already implemented in the find_distance 
function as an argument called how which defaults to 'center'. This is a link to the 
code (
https://github.com/MahShaaban/target/blob/9c6f869d794cfaff63310c5f79cea1e1095e2198/R/functions.R#L47
). I chose this as default since it would be neutral to the peak width. But of course, in a 
different use case, the user might be interested in the distance from the 'start' or 
'end' of the peak. 
 

1. 

We revised the text to state the correct downstream and upstream distances as 
pointed out by the reviewer. 
 

2. 

We are aware of these facts. We would like to argue that using these transcription 
factors is still suitable. In fact, one of the main goals of the package is to distinguish 
between the direct targets of transcription factors and the ones that change 
indirectly, hence the reliance on both gene expression and peak binding. However, 
the definition of target here might be broadened to include cases like the ones 
pointed to by the reviewer. 
 

3. 

The goal of this section, as correctly pointed out by the reviewer, is to give an 
example of further analysis of the target package output. There is a number of 
further analysis that could be performed using the found motifs, but it is beyond the 
purpose of this workflow article to get into. 
 

4. 

We revised the section to briefly describe what each function does and how. 
 

5. 

We added to the revised version of the manuscript a chunk of code to download the 
dataset. 
 

6. 

We revised the text to use "transcription factor" instead of just "factor", when 
appropriate. 
 

7. 

The data object real_transcripts is made up of the test data provided by BETA. The 
original files are too large to be included in the R package. The processing is script is 
part of the package though, `inst/extdata/make-data.R` 
 

8. 

We calculated the correlation coefficient for the fold-change of YY1 and 2 and added 
it to the text. 
 

9. 

We revised the text to correct the errors and rephrase difficult sentences.10. 
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Shulan Tian  
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Ahmed and Kim developed an R package to implement the binding and expression target analysis 
(BETA) package and extend the application to cases involving two transcription factors. The 
package predicts the potential target genes for binding sites from individual TFs or shared binding 
sites from two factors. There are some major concerns that need to be addressed.

 p4: YY1 is a zinc finger protein that directs deacetylase and histone acetyltransferases of 
the promoters of many genes. 
 
This is misleading. While YY1 binds preferentially to the promoter regions, it also binds to 
enhancers. YY1 binds to both and facilitates the structural interactions between regulatory 
elements [see Cell. 20171]. YY2 also binds to both promoters and enhancers [see Proc Natl 
Acad Sci U S A. 20162]. It should be "directs histone deacetylase and acetyltransferases to .." 
 

1. 

YY1 and YY2 have been well studied in terms of their regulatory roles. Both have dual 
activating and repressive roles in regulating target gene expression, with a lot of overlap 
between their binding sites. How about two factors both with overall activating roles? Are 
there public data available to better demonstrate the applications of this package? 
 

2. 

The R code in the manuscript is obsolete. It will be great to make the coding workflow 
consistent with the one that is available in bioconductor. For example, I can't find the data 
files mentioned in the manuscript when the target package was installed from 
bioconductor. Clearly lay out the strength to implement an R version vs. the original python 
version [described by Wang et al. 3] will be helpful, like what the authors described in the 
bioconductor documentation. Also, emphasize the low- or high-level functions implemented 
here are beneficial to general users who don't have comprehensive programming 
background. 
 

3. 

The authors illustrate how to identify the target genes for the shared binding sites between 4. 
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two TFs. How about the gene targets of the factor-unique binding sites? 
 
The authors set the maximum peak-to-gene TSS distance at 100kb, which is fine for the 
purpose of demonstration. Practically, the authors may want to provide recommendations 
or suggestions to the external users, since this is a very critical parameter. Based on the 
chromatin interaction data and co-accessibility data, peaks can target genes over a much 
larger distance. Alternatively, provide the option to incorporate topologically associating 
domains data, which will improve the detection of regulatory interactions. 
 

5. 

p6: Because the ranks rather than the absolute value of the regulatory potential are used, 
the lower the value, the higher the potential 
 
Based on the original paper of the BETA package [Figure 2], genes were ranked based on 
their regulatory potential score (from high to low), it should be "the lower the rank, the 
higher the regulatory potential"?, Please check 
 
Similarly on P7: The scores of the individual peaks are a decreasing function of the distance 
from the transcription start sites— the closer the factor binding site from the start site, the 
lower the score. 
 
Based on the original paper of the BETA package [Table], this should be "the closer the 
factor binding site to the start site, the higher the score"? Please check. 
 

6. 

 The authors need to check spelling and grammar more carefully and try to make it more 
readable. Below are some of the examples: 
 
p3: Therefore, methods to determine which of these sites are true targets [should be true 
binding sites] 
 
p3: A signed statistics (fold-change or t-statistics) 
 
p4: YY2 is a parloge of YY1 [a paralog of YY1] 
 
p4: This dataset was obtained in the form of differential expression between the two 
conditions from KnockTF [need citation] 
 
p4: ChIP-Atlas, no citation 
 
p4: USSC hg19 [UCSC hg19] 
 
p5: Figure 1, The fold-change [knockdown/control?] 
 
p5: EN-TREZIDS [Entrez IDs] 
 
P5: resize? them to 100kb upstream from the transcription start site [extend to 100kb...] 
 
p12: In Summary section: based on the distance of the ChIP peaks of the transcription 
factor in the genes and the differential expression of the factor perturbation. 

7. 
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based on the distances of the ChIP peaks of the transcription factor relative to the TSSs of 
the genes 
 
two sets of data are used to find the shared peaks and the product of their differential 
expression 
 
two sets of data are used to find the shared peaks and the rank product of their differential 
expression statistics? 
 
Table 2. two-sided [two.sided] 
 
Figure 2 legend: 
Figure 2A: the same color was used to represent both YY1 and YY2 data. 
Figure 2C should be Figure 2B. Figure 2D should be Figure 2C 
YY1 and YY2 targets are shown at each regulatory potential value. the x-axis is the rank, not 
the regulatory potential value itself 
the same for Figure 3, the x-axis is the rank of regulatory interaction 
 
Figure 3 legend: 
what are the transformed distances of the shared peaks? Need to explain whether it 
represents % of distance 
occurances [occurrences] 
 
Figure 5 legend: 
weight matrices, position weight matrices 
seq logos, sequence logos 
the letter occure at that position, occurs at that position
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Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genomics, bioinformatics, epigenomics, data science, etc

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.

Author Response 28 Oct 2021
Mahmoud Ahmed, Gyeongsang National University School of Medicine, Jinju, South Korea 

We would like to thank the reviewers for their effort and thoughtful comments. We 
addressed each point separately 

We corrected the above sentence and added another sentence to mention that the 
YY1 binds to the enhancer regions of many of its targets. 
 

1. 

Since this package aims to model the combined function of two factors from separate 
datasets, the data presented in the manuscript fit the goal well. That is, we want to 
see whether using data generated separately but in the same biological system we 
could suggest the true gene targets of the two factors. First by modeling the 
regulatory potential of each on the shared targets and then by considering the effect 
of their knockdown on the expression of the same targets. 
 

2. 

The data we used in this article is available from Figshare (and not in the package). 
We added a chunk of code to the manuscript to download the data from the source. 
This workflow article focuses on the steps to perform the analysis enabled by the 
package. It is not intended to be a substitute for reading the package documentation 
for users who are interested in the low-level functions. 
 

3. 

The code in section "Predicting gene targets of individual factors" does predict the 
targets of the individual transcription factors on their unique binding sites and the 
results are presented in Figure 2. 
 

4. 

This model is based on the idea that the regulatory potential of a given factor 
decreases with the distance from the transcription start sites. It is not clear to use 
whether this holds at very large distances or for regulators other than transcription 

5. 
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factors. Therefore we used the distance recommended by the original paper and left 
the decision to the user to make depending on their case. Users can define their 
regions of interest in any way they like, for example, using TADs. Here, we used the 
simplest case of extracting TSSs and including stretches of the up and down streams. 
 
We corrected the sentence referred to above. 
 

6. 

We corrected the sentence referred to above and revised the manuscript for typos 
and grammatical errors.

7. 
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